
On the Summation of Progressions

by means of infinite Series *

Leonhard Euler

§140 The general expression, we found in the preceding chapter for the sum-
matory term of a certain series, whose general term or the term corresponding
to the index x is = z,

Sz =
∫

zdx +
1
2

z +
Adz

1 · 2dx
− Bd3z

1 · 2 · 3 · 4dx3 +
Cd5z

1 · 2 · · · 6dx5 − etc.

especially serves for the summation of series whose general terms are any
polynomial functions of the index x, since in these cases one finally gets to
vanishing differentials. But if z was not a function of x of such a kind, then its
differentials proceed to infinity and so an infinite series expressing the sum
of the propounded series up to the given term, whose index is = x, results.
Therefore, the sum of the propounded series continued to infinity will arise, if
is put x = ∞; and this way another infinite series equal to the first arises.

§141 But if one puts x = 0, then the expression exhibiting the sum has to
vanish, as we already mentioned; if this does not happen, a constant quantity
has either to be added or subtracted that this condition is satisfied. If, having
done this, one puts x = 1, the found sum will yield the first term of the series;
but if x = 2, the aggregate of the first and the second, if x = 3, the aggregate

*Original title: “ De Summatione Progressionum per Series infinitas“, first published as part of
the book „Institutiones calculi differentialis cum eius usu in analysi finitorum ac doctrina serierum,
1755“, reprinted in in „Opera Omnia: Series 1, Volume 10, pp. 337 - 367 “, Eneström-Number
E212, translated by: Alexander Aycock for the „Euler-Kreis Mainz“
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of the first three initial terms of the series will arise, and so forth. Therefore, in
these cases, since the sum of one or two or three etc. terms is known, the value
of the infinite series, by which this sum is expressed, will become known, and
from this source one will be able to sum innumerable series.

§142 Since, if a constant of such a kind was added to the sum that it vanishes
for x = 0, then the sum satisfies all remaining cases, whatever numbers are
substituted for x, it is manifest, as long as to the found sums a constant
quantity of such a kind is added that in one special case the true sum is
indicated, that in all remaining cases the true sum has to arise. Hence, if
by putting x = 0 it is not clear, a value of which kind the expression of the
sum receives, and hence to constant to be added cannot be found, then any
other number can be set for x and by adding a constant it can be caused
that the correct sum is indicated; how this has to happen, will become more
perspicuous from the following.

§142[a] At first, let us consider this harmonic progression

1 +
1
2
+

1
3
+

1
4
+ ·+ 1

x
= s;

because the general term of it is = 1
x , it will be z = 1

x and the summatory
term s will be found this way. First, it will be

∫
zdx =

∫ dx
x = ln x; further, the

differentials will behave as this

dz
dx

= − 1
x2 ,

ddz
2dx2 =

1
x3 ,

d3z
6dx3 = − 1

x4 ,
d4z

24dx4 =
1
x5 ,

d5z
120dx5 = − 1

x6 etc.

Hence, it will therefore be

s = ln x +
1

2x
− A

2x2 +
B

4x4 −
C

6x6 +
D

8x8 − etc. + Constant.

Therefore, the constant to be added here cannot be defined from the case
x = 0. Therefore, put x = 1, since then s = 1; it will be

1 =
1
2
− A

2
+

B

4
− C

6
+

D

8
− etc. + Const.,

whence this constant becomes
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=
1
2
+

A

2
− B

4
+

C

6
− D

8
+ etc.,

and hence the summatory term sought after

s = ln x +
1

2x
− A

2x2 +
B

4x4 −
C

6x6 +
D

8x8 − etc.

+
1
2

+
A

2
− B

4
+

C

6
− C

8
+ etc.

§143 Since the Bernoulli numbers A, B, C, D etc. constitute a divergent
series, this value of the constant cannot be found. But if instead of x a greater
number is substituted and the sum of any many terms is actually sought after,
the value of the constant will be conveniently investigated. For this purpose,
set x = 10 and by collecting the first ten terms, one will find their sum

= 2.928968253968253968,

to which the expression of the sum has to be equal, if in it one puts x = 10,
which is

ln 10 +
1
20
− A

200
+

B

40000
− C

6000000
+

D

800000000
− etc. + C.

Therefore, having taken for ln 10 the hyperbolic logarithm of ten and having
substituted the values found above [§ 122] instead of A, B, C etc. one will find
that constant

C = 0.5772156649015325,

which sum therefore expresses the sum of the series

1
2
+

A

2
− B

4
+

C

6
− D

8
+

E

10
− etc.

§144 If for x sufficiently small numbers are substituted, since the sum of the
series is actually easily found, one will obtain the sum of this series

1
2x
− A

2x2 +
B

4x4 −
C

6x6 +
D

8x8 − etc. = s− ln x− C.
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But if x denotes a very large number, since then the value of this expression
running to infinity is easily assigned in decimal numbers, vice versa the sum
of the series will be defined. And first it is certainly clear, if the series is
continued to infinity, that its sum will be infinitely large; for, having put
x = ∞ also ln x becomes infinite, even though ln x has an infinitely small
ratio to x. But that the sum of an arbitrary number of terms of the series is
conveniently assigned, let us express the values of the letters A, B, C etc. in
decimal fractions.

A = 0.1666666666666

B = 0.0333333333333

C = 0.0238095238095

D = 0.0333333333333

E = 0.0757575757575

F = 0.2531135531135

G = 1.1666666666666

H = 7.0921568627451 etc.

whence it will therefore be

A

2
= 0.0833333333333

B

4
= 0.0083333333333

C

6
= 0.0039682539682

D

8
= 0.0041666666666

E

10
= 0.0075757575757

F

12
= 0.0210927960928

G

14
= 0.0833333333333

H

16
= 0.4432598039316
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EXAMPLE 1

To find the sum of thousand terms of the series 1 + 1
2 +

1
3 +

1
4 +

1
5 +

1
6 + etc.

Therefore, put x = 1000, and because it is

ln 10 = 2.3025850929940456840,

it will be

ln x = 6.9077553789821

Const. = 0.5772156649015
1

2x
= 0.0005000000000

and in total

= 7.4854709438836

subtr.
A

2xx
= 0.0000000833333

which yields

= 7.4854708605503

add
B

4x4 = 0.0000000000000

Therefore

= 7.4854708605503

is the sought after sum of thousand terms, which is still smaller than seven
and a half units.

EXAMPLE 2

To find the sum of a million terms of the series 1 + 1
2 +

1
3 +

1
4 +

1
5 +

1
6 + etc.

Since it is x = 10000, it will be ln x = 6 · ln 10, therefore
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ln x = 12.8155105579642

Const. = 0.05772156649015
1

2x
= 0.0000005000000

in total

= 14.3927267228657 = Sum sought after

§145 If therefore for x one sets a very large number, the sum is found
sufficiently exact from the first term ln x alone augmented by the constant
C; hence, extraordinary corollaries can be deduced. So, if x was a very large
number and one puts

1 +
1
2
+

1
3
+

1
4
+

1
5
+ · · ·+ 1

x
= s

and

1 +
1
2
+

1
3
+

1
4
+ · · ·+ 1

x
+ · · ·+ 1

x + y
= t,

since it is approximately s = ln x + C and t = ln(x + y) + C, it will be

t− s = ln(x + y)− ln x =
x + y

x
and hence this logarithm is approximately expressed by means a harmonic
series consisting of a finite numbers of terms in this way

ln
x + y

y
=

1
x + 1

+
1

x + 2
+

1
x + 3

+ · · ·+ 1
x + y

.

But this logarithm is exhibited more accurately, if the superior sums s and t
are taken more exact. So, because it is

s = ln x + C +
1

2x
− 1

12xx
and t = ln(x + y) + C +

1
2(x + y)

− 1
12(x + y)2

it will be
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t− s = ln
x + y

x
− 1

2x
+

1
2(x + y)

+
1

12xx
− 1

12(x + y)2 ,

and hence

ln
x + y

x
=

1
x + 1

+
1

x + 2
+

1
x + 3

+ · · ·+ 1
x + y

+
1

2x
− 1

2(x + y)
− 1

12xx
+

1
12(x + y)2 .

But if x is such a large number that the two last terms can be rejected, it will
approximately be

ln
x + y

x
=

1
x + 1

+
1

x + 2
+

1
x + 3

+ · · ·+ 1
x + y

+
1
2

(
1
x
− 1

x + y

)
.

§ 145a From this harmonic series we will also be able to define the sum of
this series, in which only the odd numbers occur,

1
1
+

1
3
+

1
5
+

1
7
+

1
9
+ · · ·+ 1

2x + 1
.

For, because taking all terms it is

1 +
1
2
+

1
3
+

1
4
+ · · ·+ 1

2x
+

1
2x + 1

= ln(2x + 1) + C +
1

2(2x + 1)
− A

2(2x + 1)2 +
B

4(2x + 1)4 −
C

6(2x + 1)6 + etc.,

the sum of the even terms

1
2
+

1
4
+

1
6
+ · · ·+ 1

2x
is the half of the superior one, namely

1
2

C +
1
2

ln x +
1

4x
− A

4x2 +
B

8x4 −
C

12x6 +
D

16x8 − etc.,

having subtracted this series from the latter

1 +
1
3
+

1
5
+

1
7
+ · · ·+ 1

2x + 1

=
1
2

C + ln
2x + 1√

x
+

1
2(2x + 1)

− A

2(2x + 1)2 +
B

4(2x + 1)4 − etc.

− 1
4x

+
A

4x2 −
B

8x4 + etc.
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§146 One can indeed even find the sum of any harmonic series by means of
the same general expression; for, let be

1
m + n

+
1

2m + n
+

1
3m + n

+
1

4m + n
+ · · ·+ 1

mx + n
= s;

since the general term is z = 1
mx+n , it will be

∫
zdx =

1
m

ln(mx + n),
dz
dx

= − m
(mx + n)2 ,

ddz
2dx2 =

mm
(mx + n)3 ,

d3z
6dx3 = − m3

(mx + n)4 ,
d4z

24dx4 =
m4

(mx + n)5 ,
d5z

120dx5 = − m5

(mx + n)6 etc.

From these it is therefore found

s = D +
1
m

ln(mx + n) +
1

2(mx + n)
− Am

2(mx + n)2 +
Bm3

4(mx + n)4

− Cm5

6(mx + n)6 +
Dm7

8(mx + n)8 − etc.

Therefore, having put x = 0 the constant to be added will be

D = − 1
m

ln n− 1
2n

+
Am
2n2 −

Bm3

4n4 +
Cm5

6n6 − etc.

§147 But if n = 0, since the sum of the series

1
m

+
1

2m
+

1
3m

+
1

4m
+ · · ·+ 1

mx
is

=
1
m

C +
1
m

ln x +
1

2mx
− A

2mx2 +
B

4mx4 − etc.,

but the sum of this series

1 +
1
2
+

1
3
+

1
4
+

1
5
+ · · ·+ 1

mx
is
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= C + ln mx +
1

2mx
− A

2m2x2 +
B

4m4x4 − etc.,

if from this series the latter taken m times is subtracted that this series arises

1 +
1
2
+ · · ·+ 1

m
+ · · ·++

1
2m

+ · · ·+ 1
3m

+ · · ·+ 1
mx

− m
m

− m
2m

− m
3m

− m
mx

,

its sum will be

= ln m +
1

2mx
− A

2m2x2 +
B

4m4x4 − etc.

− 1
2x

+
A

2xx
− B

4x4 + etc.,

and if one sets x = ∞, the sum will be = ln m. Hence, by taking the numbers
2, 3, 4 etc. for m it will be

ln 2 = 1− 1
2
+

1
3
− 1

4
+

1
5
− 1

6
+

1
7
− 1

8
+ etc.

ln 3 = 1 +
1
2
− 2

3
+

1
4
+

1
5
− 2

6
+

1
7
+

1
8
− 2

9
+ etc.

ln 4 = 1 +
1
2
+

1
3
− 3

4
+

1
5
+

1
6
+

1
7
− 3

8
+ etc.

ln 5 = 1 +
1
2
+

1
3
+

1
4
− 4

5
+

1
6
+

1
7
+

1
8
+

1
9
− 4

10
+ etc.

etc.

§148 But having left the harmonic series let us proceed to the reciprocal
series of the squares and let

s = 1 +
1
4
+

1
9
+

1
16

+ · · ·+ 1
xx

;

since in it the general term is z = 1
xx , it will be

∫
zdx = − 1

x and the differential
of z will behave this way

dz
2dx

= − 1
x3 ,

ddz
2 · 3dx2 =

1
x4 ,

d3z
2 · 3 · 4dx3 = − 1

x5 etc.,
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whence the sum will be

s = C− 1
x
+

1
2xx
− A

x3 +
B

x5 −
C

x7 +
D

x9 −
E

x11 + etc.,

in which the constant C to be added is to be defined from a single case, in
which the sum is known. Therefore, let us put x = 1; since x = 1, it has to be

C = 1 + 1− 1
2
+A−B+ C−D+ E− etc.,

which series, since it is most divergent, does not show the value of the
constant C. But since we demonstrated above [§ 125] that the sum of this
series continued to infinity is = ππ

6 , having put x = ∞, if one puts s = ππ
6 , it

will be C = ππ
6 because all remaining terms vanish. Therefore, it will be

1 + 1− 1
2
+A−B+ C−D+ E− etc. =

ππ

6
.

§149
s =1.549767731166540690

then it is

add 1
x =0.1

subtr. 1
2xx=0.0005

1.644767731166540690

add A
x3 =0.000166666666666666

1.644934397833207356

subtr. B
x5 =0.000000333333333333

1.644934064499874023

add C
x7 =0.000000002380952381

1.644934066880826404

subtr. D
x9 =0.000000000033333333

1.6444066847493071
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add E
x11 =0.000000000000757575

1.644934066848250646

subtr. F
x13 =0.000000000000025311

1.644934066848225335

add G
x15 =0.000000000000001166

subtr. H
x17 =0.000000000000000071

1.644934066848226430= C.

And this value at the same time is the value of the expression ππ
6 , as is will

become plain to anyone carrying out the calculation from the known value of
π. Hence, it is understood at the same time, even though the series A, B, C
etc., that nevertheless the true sum arises this way.

§150 Now let z = 1
x3 and

s = 1 +
1
23 +

1
33 +

1
43 + · · ·+ 1

x3 ;

since it is∫
zdx = − 1

2xx
,

dz
1 · 2 · 3dx

= − 1
2x4 ,

ddz
1 · 2 · 3 · 4dx2 =

1
2x5 ,

d3z
1 · 2 · · · 5dx3 = − 1

2x6 ,
d4z

1 · 2 · · · 6dx4 =
1

2x7 ,
d5z

1 · 2 · · · 7dx5 = − 1
2x6 etc.,

it will be

s = C− 1
2xx

+
1

2x3 −
3A
2x4 +

5B
2x6 −

7C
2x6 + etc.

and hence having put x = 1 because of s = 1 it will be

C = 1 +
1
2
− 1

2
+

3
2
A− 5

2
B+

7
2
C− 9

2
D+ etc..

and this value of C at the same time will show the sum of the propounded
series continued to infinity. Since the sums of the odd powers are not known
as the sum of the even ones, this value of C has to be defined from the known
sum of some terms. Therefore, let x = 10; it will be
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C = s +
1

2xx
− 1

2x3 +
2A
2x4 −

5B
2x6 +

7C
2x8 − etc.

But, in order to perform the calculation more easily, it is

3A
2

= 0.250000000000

5B
2

= 0.833333333333

7C
2

= 0.833333333333

9D
2

= 0.150000000000

11E
2

= 0.416666666666

13F
2

= 1.645280952380

15G
2

= 8.750000000000

17H
2

= 60.283333333333

etc.

Hence, the terms to be added to s will become

1
2xx =0.005000000000000000

3A
2x4 =0.000025000000000000

7C
2x8 =0.000000000833333333

11E
2x12 =0.000000000000416666

13F
2x16 =0.000000000000000875

0.005025000833750875

but the terms to be subtracted are
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1
2x3 =0.005000000000000000

5B
2x6 =0.000000000833333333

9D
2x10 =0.000000000001500000

13F
2x14 =0.000000000000016452

17F
2x18 =0.000000000000000060

0.000500083348349845

from 0.005025000833750875

0.004524917485401030

s =1.197531985674193251

C =1.202056903159594281

§151 If we continued this way, we will find the sum of all series of reciprocal
powers expressed in decimal fractions.

1 +
1
22 +

1
32 +

1
42 + etc. = 1.6449340668482264 =

2A
1 · 2 π2

1 +
1
23 +

1
33 +

1
43 + etc. = 1.2020569031595942

1 +
1
24 +

1
34 +

1
44 + etc. = 1.0823232337111381 =

23B

1 · 2 · 3 · 4 π4

1 +
1
25 +

1
35 +

1
45 + etc. = 1.0369277551433699

1 +
1
26 +

1
36 +

1
46 + etc. = 1.0173430619844491 =

25E

1 · 2 · · · 6 π6

1 +
1
27 +

1
37 +

1
47 + etc. = 1.0083492773819288

1 +
1
28 +

1
38 +

1
48 + etc. = 1.0040773561979443 =

27D

1 · 2 · · · 8 π8

1 +
1
29 +

1
39 +

1
49 + etc. = 1.0020083928260822
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1 +
1

210 +
1

310 +
1

410 + etc. = 1.0009945751278180 =
29E

1 · 2 · · · 10
π10

1 +
1

211 +
1

311 +
1

411 + etc. = 1.0004941886041194

1 +
1

212 +
1

312 +
1

412 + etc. = 1.0002460865533080 =
211F

1 · 2 · · · 12
π12

1 +
1

213 +
1

313 +
1

413 + etc. = 1.0001227133475784

1 +
1

214 +
1

314 +
1

414 + etc. = 1.0000612481350587 =
213G

1 · 2 · · · 14
π14

1 +
1

215 +
1

315 +
1

415 + etc. = 1.0000305882363070

1 +
1

216 +
1

316 +
1

416 + etc. = 1.0000152822594086 =
215H

1 · 2 · · · 16
π16

etc.

§152 From these vice versa the sums of those series consisting of the Ber-
noulli numbers can be exhibited. For, it will be

1 +−1
2
+

A

2
− B

4
+

C

6
− D

8
+ etc. = 0.57721 etc.

1 + 1− 1
2
+A−B+ C−D+ etc. =

2A
1 · 2π2

1 +
1
2
− 1

2
+

2A
2
− 5B

2
+

7C
2
− 9D

2
+ etc. = 1.2020 etc.

1 +
1
3
− 1

2
+

3 · 4A
2 · 3 −

5 · 5B
2 · 3 +

7 · 8C
2 · 3 −

9 · 10D
2 · 3 + etc. =

23B

1 · 2 · 3 · 4π4

1 +
1
4
− 1

2
+

3 · 4 · 5A
2 · 3 · 4 −

5 · 6 · 7B
2 · 3 · 4 +

7 · 8 · 9C
2 · 3 · 4 −

9 · 10 · 11D
2 · 3 · 4 + etc. = 1.0369 etc.

1 +
1
5
− 1

2
+

3 · 4 · 5 · 6A
2 · 3 · 4 · 5 −

4 · 5 · 6 · 7B
2 · 3 · 4 · 5 +

5 · 6 · 7 · 8C
2 · 3 · 4 · 5 − etc. =

25C

1 · 2 · · · 6π6

etc.

Therefore, each second of these series can be summed by means of the qua-
drature of the circle; on which transcendental quantity the remaining depend,
is not known to this day; for, they cannot be reduced to powers of π with odd
exponent, such that the coefficients would be rational numbers. But that this
at least becomes approximately clear, how the coefficients of powers of π will
behave for odd exponents, we added the following table.
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1 +
1
2

+
1
3

+
1
4

+ etc. to infinity =
π

0.0000
= ∞

1 +
1
22 +

1
32 +

1
42 + etc. to infinity =

π2

6.0000
exactly

1 +
1
23 +

1
33 +

1
43 + etc. to infinity =

π3

25.79436
approximately

1 +
1
24 +

1
34 +

1
44 + etc. to infinity =

π2

90.00000
exactly

1 +
1
25 +

1
35 +

1
45 + etc. to infinity =

π5

295.1215
approximately

1 +
1
26 +

1
36 +

1
46 + etc. to infinity =

π6

945.000
exactly

1 +
1
27 +

1
37 +

1
47 + etc. to infinity =

π2

2995.284
approximately

1 +
1
28 +

1
38 +

1
48 + etc. to infinity =

π2

9450.0000
exactly

1 +
1
29 +

1
39 +

1
49 + etc. to infinity =

π9

29749.35
approximately

etc.

§153 From these source the series of Bernoulli numbers

1 2 3 4 5 6 7 8 9

A, B, C, D, E, F, G, H, I etc.,

how irregular it might seem, can be interpolated or the terms constituted in
the middle of any two can be assigned; for, if the term falling in the middle
between the first A and the second B or the one corresponding to the index
1 1

2 was = p, it will be

1 +
1
23 +

1
33 + etc. =

22 p
1 · 2 · 3π3

and hence

p =
3

2π3

(
1 +

1
23 +

1
33 + etc.

)
= 0.05815227.
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If in similar manner the term falling in the middle between B and C or having
the index 2 1

2 is put = q, since it will be

1 +
1
25 +

1
35 + etc. =

24q
1 · 2 · 3 · 4 · 5π5,

it will be

q =
15

2π5

(
1 +

1
25 +

1
35 + etc.

)
= 0.02541327.

Therefore, if the sums of these series, in which the exponents of the powers are
odd numbers could be exhibited, then also the series of the Bernoulli numbers
could be interpolated.

§154 Now, let us put z = 1
nn+xx and search after the sum of this series

s =
1

nn + 1
+

1
nn + 4

+
1

nn + 9
+ · · ·+ 1

nn + xx
.

Since it is
∫

zdx =
∫ dx

nn+xx , it will be∫
zdx =

1
n

arctan
x
n

.

Put arccot x
n = u; it will be ∫

zdx =
1
n

(π

2
− u

)
and

x
n
= cot u =

cos u
sin u

and
nn + xx

nn
=

1
sin2 u

and z =
sin2 u

nn
and

dx
n

= − du
sin2 u

,

whence it is

du = −dx sin2 u
n

.

Hence, the differentials of z will be found this way

dz =
2du sin u · cos u

nn
= −dx sin2 u sin 2u

n3 and
dz
dx

= −sin2 u · sin 2u
n3 ,
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ddz
dx2 = −du(sin u · cos u · sin 2u + sin2 u · cos 2u)

n3 =
dx sin3 ·3u

n4

and

ddz
2dx2 =

sin3 u · sin 3u
n4 .

In similar way, as we already found above [§ 87] for the same case, it will be

d3z
2 · 3dx3 = −sin4 · sin 4u

n5 ,
d4z

2 · 3 · 4dx4 =
sin5 · sin 5u

n6 etc.,

from which the sum in question will be formed

s =
π

2n
− u

n
+

sin u · sin u
2nn

− A

2
· sin2 u · sin 2u

n3 +
B

4
· sin4 u · sin 4u

n5

−C

6
· sin6 u · sin 6u

n7 +
D

8
· sin8 u · sin 8u

n9 − etc. + Const.

If here to determine the constant one sets x = 0, in which case s = 0, it will
be cot u = 0 and hence u the angle of 90◦ and therefore sin u = 1, sin 2u = 0,
sin 4u = 0, sin 6u = 0 etc.; therefore, it seems that it will be

0 =
π

2n
− π

2n
+

1
2nn

+ C and hence C = − 1
2nn

;

but on the other hand it is to be noted, even though the remaining terms
vanish, that nevertheless, since the coefficients A, B, C etc. eventually grow to
infinity, that their sum can be finite.

§155 To determine this constant in the right manner let us put that x = ∞; for,
we defined the sum of this series running to infinity already in the Introdctio
and showed that it is

= − 1
2nn

+
π

2n
+

π

n(e2πb − 1)
.

But having put x = ∞ it will be u = 0 and hence sin u = 0 and at the same
time the sines of all multiple arcs will vanish. But since in this series the
powers of sin u grow, the divergence of the series cannot impede that the
value of the series vanishes in this case. Therefore, it will become s = π

2n + C;
hence, it will be
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π

2n
+ C = − 1

2nn
+

π

2n
+

π

n(e2nπ)− 1
and C = − 1

2nn
+

π

n(e2nπ − 1)
.

Therefore, the sum of the series in question will be

s =
π

2n
− u

n
− 1

2nn
+

sin2 u
2nn

− A

2
· sin2 u · sin 2u

n3

+
B

4
· sin4 u · sin 4u

n5 − C

6
· sin6 u · sin 6u

n7 + etc. +
π

n(e2nπ − 1)
.

Where it is to be noted, if n was a mediocre large number, that the last term
π

n(e2πn−1) will become so small that it can be neglected.

§156 Let us put that it is x = n such that it denotes

s =
1

nn + 1
+

1
nn + 4

+
1

nn + 9
+ · · ·+ 1

nn + nn
.

Then, it will be cot u = 1 and u = 45◦ = π
4 . Therefore, one will have sin u = 1√

2
,

sin 2u = 1, sin 4u = 0, sin 6u = −1, sin 8u = 0, sin 10u = 1 etc. Therefore, it
will be

s =
π

4n
− 1

2nn
+

1
4nn
− A

2 · 2n3 +
C

6 · 8n7 −
E

10 · 25n11 +
G

14 · 27n15 − etc.+
π

n(e2nπ − 1)
,

in which expression only each second Bernoulli appears. Therefore, if the
value of s was already found by actually performed calculation, hence the
quantity π can be defined; for, it will be

π = 4ns +
1
n
+

A

1 · n2 −
C

3 · 22n6 +
E

5 · 24n10 −
G

7 · 26n14 + etc.− 4π

e2nπ − 1
.

For, even though in the last term π is contained, nevertheless, since it is so
small, it suffices to determine the value of π approximately.
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EXAMPLE

Let n = 5; it will be

s =
1
26

+
1
29

+
1
34

+
1
41

+
1

50
;

these terms actually added will give

s = 0.146746306590549494;

Hence the terms will be

4ns=2.93492611381098988

1
n=0.20000000000000000

A
nn=0.00666666666666666

3.14159278047765654

C
3·22·n6 =0.00000012698412698

3.14159265349352956

D
5·24·n10 =0.00000000009696969

3.14159265359049925

E
7·26·n14 =0.00000000000042666

3.14159265359007259

F
9·28·n18 =0.00000000000000625

3.14159265359007884.

This value already comes so close to the truth that one has to wonder why
by means of such a simple calculation one can get this far. This expression is
indeed a little bit larger than the correct value; for, one has still to subtract

4π
e2nπ−1 , whose value, as long as π is sufficiently accurately known, can be
exhibited; this will be achieved by means of logarithms.

Since it is π log e = 1.3643763538, it will be

log e2nπ = 10π log e = 13.6437635.
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Because it is

4π

e2nπ − 1
=

4π

e2nπ
+

4π

e4nπ
+ etc.,

it is easily understood that for our calculation it suffices to have taken the first
of the terms. Therefore, let us augment the characteristic by the number 17,
since we have the same number of decimal places; it will be

log π = 17.4971498

log 4 = 0.6020600

18.0992098

subtr. log e2nπ= 13.6437635

Therefore 4.4554463
4π

e2nπ = 28539

subtract from

3.14159265369007884

it will be π =3.14159265358979345

which expression just in the penultimate figure recedes from the truth; this is
not to be wondered about, since we would have to subtract the term L

11·210·n22 ,
which gives 22, and so not even the last figure would have been wrong.
Moreover, it is understood, if for n we would have taken a greater number as
10, then in an easy task the periphery π could have been found up to 25 and
more figures.

§157 Now let us also put transcendental functions of x for z and let be
z = ln x by taking hyperbolic logarithms, since ordinary ones are easily
reduced to them, and let

s = ln 1 + ln 2 + ln 3 + ln 4 + · · ·+ ln x.

Since it therefore is z = ln x, it will be∫
zdx = x ln x− x;

for, its differential gives dx ln x. Furthermore, it is
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dz
dx

=
1
x

,
ddz
dx2 = − 1

x2 ,
d3z

1 · 2dx3 =
1
x3 ,

d4z
1 · 2 · 3dx4 = − 1

x4 ,
d5z

1 · 2 · 3 · 4dx5 =
1
x5 etc.

Therefore, one will conclude that it will be

s = x ln x− x +
1
2

ln x +
A

1 · 2x
− B

3 · 4x3 +
C

5 · 6x5 −
D

7 · 8x7 + etc. + Const.

But this constant by putting x = 1, since s = ln 1 = 0, will be defined in such
a way that it is

C = 1− A

1 · 2 +
B

3 · 4 −
C

5 · 6 +
D

7 · 8 − etc.,

which series because of the too strong divergence is inept to find the value of
C at least approximately.

§158 But we will not only find an approximate value, but even even the true
value of C, if we consider Wallis’s expression found for the value of π and
demonstrated in the Introductio, which was

π

2
=

2·2·4·4·6·6·8·8·10·10·12·etc.

1·3·3·5·5·7·7·9· 9 ·11·11·etc.

For, by taking logarithms, it will therefore be

ln π − ln 2 = 2 ln 2 + 2 ln 4 + 2 ln 6 + 2 ln 8 + 2 ln 10 + ln 12 + etc.

− ln 1− 2 ln 3− 2 ln 5− 2 ln 7− 2 ln 9− 2 ln 11− etc.

Therefore, in the assumed series let us put x = ∞, and because it is

ln 1 + ln 2 + ln 3 + ln 4 + · · ·+ ln x = C +

(
x +

1
2

)
ln x− x,

it will be

ln 1 + ln 2 + ln 3 + ln 4 + · · ·+ ln 2x = C +

(
2x +

1
2

)
ln 2x− 2x
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and

ln 2 + ln 4 + ln 6 + ln 8 + · · ·+ ln 2x = C +

(
x +

1
2

)
ln x− x ln 2− x,

hence

ln 1 + ln 3 + ln 5 + ln 7 + · · ·+ ln(2x− 1) = C +

(
x +

1
2

)
ln 2− x.

Since it therefore is

ln
π

2
= 2 ln 2 + 2 ln 4 + 2 ln 6 + · · ·+ 2 ln 2x− ln 2x

− 2 ln 1 − 2 ln 3− 2 ln 5− · · · − 2 ln(2x− 1),

having put x = ∞ it will be

ln
π

2
= 2C+(2x+ 1) ln x+ 2x ln 2− 2x− ln 2− ln x− 2x ln x− (2x+ 1) ln 2+ 2x

and hence

ln
π

2
= 2C− 2 ln 2, therefore 2C = ln 2π and C =

1
2

ln 2π,

whence in decimal fractions it is found

C = 0.9189385332046727417803297,

and at the same time the following series is summed

1− A

1 · 2 +
B

3 · 4 −
C

5 · 6 +
D

7 · 8 −
E

9 · 10
+ etc. =

1
2

ln 2π.

§159 Now, having known this constant C = 1
2 ln 2π the sum of any number

of logarithms from this series ln 1 + ln 2 + ln 3 + etc. can be exhibited. For, if
one puts

s = ln 1 + ln 2 + ln 3 + ln 4 + · · ·+ ln x,
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it will be

s =
1
2

ln 2π +

(
x +

1
2

)
ln x− x +

A

1 · 2x
− B

3 · 4x3 +
C

5 · 6x5 −
D

7 · 8x7 + etc.,

if the propounded logarithms were hyperbolic; but if ordinary logarithms are
propounded, then in the terms 1

2 ln 2π +
(
x + 1

2

)
ln x for ln 2π and ln x one

has to take ordinary logarithms, but the remaining terms of the series

−x +
A

1 · 2x
− B

3 · 4x3 + etc.

have to be multiplied by 0.434294481903251827 = n. Therefore, in this case
for ordinary values it will be

log π=0.497149872694133854351268

log 2=0.301029995663981195213738

log 2π=0.798179868358115049565006

1
2 log 2π=0.399089934179057524782503.

EXAMPLE

Let the aggregate of thousand tabled logarithms be sought after

s = log 1 + log 2 + log 3 + · · ·+ log 1000.

Therefore, it will be x = 1000 and

log x= 3.000000000000

whence it is x log x= 3000.000000000000

1
2 log x= 1.500000000000

1
2 log 2π= 0.399089341790

3001.8990899341790

subtr. nx=2567.6046080309272
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Furthermore, it is
nA

1·2x = 0.0000361912068

subtr. nB
3·4x3 = 0.0000000000012

add. = 2567.6046080309272

sum sought after s=2567.6046442221328.

Since therefore s is the logarithm of the product of the numbers

1 · 2 · 3 · 4 · 5 · 6 · · · 1000,

it is clear that this product, if actually multiplied, consists of 2568 figures
and the first numbers will be 4023872, which will be followed by 2561 other
numbers.

§160 Therefore, by means of this summation of logarithms the products of
arbitrary many factors, which proceed in the natural numbers, can be assigned
approximately. To this one can mainly refer the problem, in which the middle
term or the largest term in any power of the binomial (a + b)m is sought after,
where it is certainly to be noted, if m is an odd number that two equal middle
terms are given which taken together yield the middle term in the following
even power. Because hence the largest coefficient in any even power is twice as
large as the middle coefficient in the preceding odd power, it will be sufficient
to have determined the largest middle term for the even powers. Therefore,
let m = 2n and the middle coefficient will be expressed in such a way that it is

2n(2n− 1)(2n− 2)(2n− 3) · · · (n + 1)
1 · 2 · 3 · 4 · · · n .

Let us call this middle coefficient which is in question = u and one will be
able to represent it in this way that it is

u =
1 · 2 · 3 · 4 · 5 · · · 2n
(1 · 2 · 3 · 4 · · · 2n)2 ,

and having taken logarithms it will be

ln u = ln 1 + ln 2 + ln 3 + ln 4 + ln 5 + · · ·+ ln 2n

−2 ln 1− 2 ln 2− 2 ln 3− 2 ln 4− 2 ln 5− · · · − 2 ln 2n.
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§161 Now, by taking these logarithms as hyperbolic logarithms it will be

ln 1+ ln 2+ ln 3+ ln 4+ · · ·+ ln 2n =
1
2

ln 2π+

(
2n +

1
2

)
ln n+

(
2n +

1
2

)
ln 2− 2n

+
A

1 · 2 · 2n
− B

3 · 4 · 23n3 +
C

5 · 6 · 25n5 − etc.

and

2 ln 1 + 2 ln 2 + 2 ln 3 + 2 ln 4 + · · ·+ 2 ln n

= ln 2π + (2n + 1) ln n− 2n +
2A

1 · 2n
− 2B

3 · 4n3 +
2C

5 · 6n5 − etc.,

having subtracted which expression from the latter it will remain

ln u = −1
2

ln π − 1
2

ln n + 2n ln 2 +
A

1 · 2 · 2n
− B

3 · 4 · 23n3 +
C

5 · 6 · 25n5 − etc.

− 2A
1 · 2n

+
2B

3 · 4n3 −
2C

5 · 6n5 + etc.;

by collecting each two terms it will be

ln u = ln
22n
√

nπ
− 3A

1 · 2 · 2n
+

15B
3 · 4 · 23n3 −

63C
5 · 6 · 25n5 +

255D
7 · 8 · 27n7 − etc.

Let

3A
1 · 2 · 22n2 −

15B
3 · 4 · 24n4 +

63C
5 · 6 · 26n6 −

255D
7 · 8 · 28n8 + etc.

= ln
(

1 +
A

22n2 +
B

24n4 +
C

26n6 +
D

28n8 + etc.
)

;

it will be

ln u = ln
22n
√

nπ
− 2n ln

(
1 +

A
22n2 +

B
24n4 +

C
26n6 + etc.

)
and hence

u2n(
1 + A

22n2 +
B

24n4 +
C

26n6 + etc.
)2n√

nπ
.
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Having put 2n = m it will be

ln
(

1 +
A

22n2 +
B

24n4 +
C

26n6 +
D

28n8 + etc.
)

=
A

m2 +
B

m4 +
C

m6 +
D
m8 +

E
m10 + etc.

− A2

2m4 −
AB
m6 −

AC
m8 −

AD
m10 − etc.

− BB
2m8 −

BC
m10 − etc.

+
A3

3m6 +
A2B
m8 +

A2C
m10 + etc.

+
AB2

m10 + etc.

− A4

4m8 −
A3B
m10 − etc.

+
A5

5m10 + etc.;

since this expression has to be equal to this one

2A
1 · 2m2 −

15B
3 · 4 +

63C
5 · 6m6 −

255D
7 · 8m8 + etc.,

it will be

A =
3A
1 · 2

B =
A2

2
− 25B

3 · 4
C = AB− 1

3
A3 +

63C
5 · 6

D = AC +
1
2

B2 − A2B +
1
4

A4 − 255D
7 · 8

E = AD + BC− A2C− AB2 + A3B− 1
5

A5 +
1023E
9 · 10

etc.

§162 Because it is A = 1
6 , B = 1

30 , C = 1
42 , D = 1

30 , E = 5
66 , it will be
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A =
1
4

, B = − 1
96

, C =
27
640

, D = − 90031
211 · 32 · 5 · 7 etc.

Hence, one causes

u =
22n(

1 + 1
24n2 − 1

29·3n4 +
27

213·5n6 − 90031
219·32·5·7n8 + etc.

)2n√nπ

or

u =
22n (1− 1

24n2 +
7

29·3n4 − 121
213·3·5n6 +

107489
219·32·5·7n8 − etc.

)2n

√
nπ

,

or if this expansion of the series is actually done, it will approximately be

u =
22n

√
nπ
(
1 + 1

4n + 1
32n2 − 1

128n5 − 5
16·128n4 + etc.

) ;

hence, the middle term in (1 + 1)2n will behave to the sum of all terms 22n

as 1 to

√
nπ

(
1 +

1
4n

+
1

32n2 −
1

128n3 −
5

16 · n4 + etc.
)

;

or having put 4n = ν for the sake of brevity this ratio will be

as to

√
nπ

(
1 +

1
ν
+

1
2ν2 −

1
2ν3 −

5
8ν4 +

23
8ν5 +

53
16ν6 − etc.

)
.

EXAMPLE 1

Let the middle term in the expanded binomial (a + b)10 be sought after, which is
known to be

=
10 · 9 · 8 · 7 · 6
1 · 2 · 3 · 4 · 5 = 252.

Applying the last formula found for u it will be n = 5 and hence
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1
4n =0.0500000

1
32n2 =0.0012500

0.0512500

subtract 1
128n3 =0.0000625

0.0511875

Therefore 1 + 1
4n + etc.=1.0511836

the log. of this =0.0216784

ln n=0.6989700

ln π=0.4971498

1.2177982

ln
√

nπ(1 + etc.)=0.6088991

from ln 22n=3.0102999

ln u=2.4014008

whence it is u=252.

EXAMPLE 2

Investigate the ratio which in the hundredth power of the binomial 1 + 1 the middle
term has to sum of all 2100.

For this let us use the formula found first

ln u = ln
22n
√

nπ
− 3A

1 · 2 · 2n
+

15B
3 · 4 · 23n3 −

63C
5 · 6 · 25n5 + etc.,

in which having put 2n = m that one has this power (1 + 1)m and having
substituted the values for A, B, C, D etc. it will be

ln u = ln
2m√
1
2 mπ

− 1
4m

+
1

24m3 −
1

20m5 +
17

112m7 −
31

36m9 +
691

88m11 − etc.;
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since these logarithms are hyperbolic, multiply them by

k = 0.434294481903251,

that they are transformed into tabled ones, and it will be

log u = log
2m√
1
2 mπ

− k
4m

+
k

24m3 −
k

20m5 +
17

112m7 −
31

36m9 + etc.,

whence, because the middle term is u, the ratio in question will be 2m : u and
hence

log
2m

u
= log

1
2

mπ +
k

4m
− k

24m3 +
k

20m5 −
17k

122m7 +
31k

36m9 −
691k

88m11 + etc.

Hence, because it is because of the exponent m = 100

k
m

= 0.0043429448,
k

m3 = 0.0000004343,
k

m5 = 0.0000000000,

it will be

k
4m =0.0010857362

k
24m3 =0.0000000181

0.0010857181

Then it is

log π=0.4971498726

log 1
2 m=1.6989700043

log 1
2 mπ=2.1961198769

log
√

1
2 mπ=1.0980599384

k
4m −

k
24m3 + etc.=0.0010857181

1.0991456565= ln 2100

u .

Therefore, it will be 2100

u = 12.56451 and hence in the expanded power (1 +
1)100 the middle term will behave to the sum of all 2100 as 1 to 12.56451.
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§163 Now, let the general term z denote the exponential function ax such
that this geometric series has to be summed

s = a + a2 + a3 + a4 + · · ·+ ax;

since it is a geometric series, its sum is already known; for, it will be s = (ax−1)a
a−1 .

But let us investigate this sum in the way explained here. Since it is z = ax, it
will be

∫
zdx = ax

ln a ; for, the differential of this is axdx; but then it will be

dz
dx

= ax ln a,
ddz
dx2 = ax(ln a)2,

d3z
dx3 = ax(ln a)3 etc.,

whence it follows that it will be

s = ax
(

1
ln a

+
1
2
+

A

1 · 2 ln a− B

1 · 2 · 3 · 4 (ln a)3 +
C

1 · 2 · 3 · · · 6 − etc.
)
+ C.

To define the constant C put x = 0 and because of s = 0 it will be

C = − 1
ln a
− 1

2
− A

1 · 2 ln a +
B

1 · 2 · 3 · 4 (ln a)3 − etc.

and hence it will be

s = (ax− 1)
(

1
ln a

+
1
2
+

A

1 · 2 ln a− B

1 · 2 · 3 · 4 (ln a)3 +
C

1 · 2 · 3 · · · 6 (ln a)5 − etc.
)

Because therefore the sum is (ax−1)a
a−1 it will be

a
a− 1

=
1

ln a
+

1
2
+

A

1 · 2 ln a− B

1 · 2 · 3 · 4 (ln a)3 +
C

1 · 2 · 3 · · · 6 (ln a)5 − etc.,

where ln a denotes the hyperbolic logarithm of a; hence, it becomes

(a + 1) ln a
2(a− 1)

= 1 +
A(ln a)2

1 · 2 − B(ln a)4

1 · 2 · 3 · 4 +
C(ln a)5

1 · 2 · 3 · · · 6 − etc.

and so one will be able to exhibit the sum of this series.
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§164 Let the general term be z = sin ax and

s = sin a + sin 2a + sin 3a + · · ·+ sin ax;

this series, since it is recurring, can also be summed; for, it will be

s =
sin a + sin ax− sin(ax + a)

1− 2 cos a + 1
=

sin a + (1− cos a) sin ax− sin a · cos ax
2(1− cos a)

.

It will be ∫
zdx =

∫
dx sin ax = −1

a
cos ax

and

dz
dx

= a cos ax,
d3z
dx3 = −a3 cos ax,

d5z
dx5 = a5 cos ax etc.

Therefore

s = C− 1
a

cos ax +
1
2

sin ax +
Aa cos ax

1 · 2 +
Ba3 cos ax
1 · 2 · 3 · 4

+
Ca5 cos ax

1 · 2 · 3 · 4 · 5 · 6 +
Da7 cos ax
1 · 2 · · · 8 + etc.

Put x = 0 that it is s = 0 and it will be

C =
1
a
− Aa

1 · 2 −
Ba3

1 · 2 · 3 · 4 −
Ca5

1 · 2 · · · 6 − etc.,

therefore

s =
1
2

sin ax + (1− cos sx)
(

1
a
− Aa

1 · 2 −
Ba3

1 · 2 · 3 · 4 −
Ca5

1 · 2 · · · 6 − etc.
)

.

But because it is

s =
1
2

sin ax +
(1− cos ax) sin a

2(1− cos a)
,

it will become

sin a
2(1− cos a)

=
1
2

cot
1
2

a =
1
a
− Aa

1 · 2 −
Ba3

1 · 2 · 3 · 4 −
Ca5

1 · 2 · · · 6 − etc.,

which same series we already had above (§ 127).
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§165 Now let z = cos ax and the series to be summed

s = cos a + cos 2a + cos 3a + · · ·+ cos ax;

the sum of this series, since it is recurring, will be

s =
cos a− 1 + cos ax− cos(ax + a)

1− 2 cos a + 1
= −1

2
+

1
2

cos ax +
1
2

cot
1
2

a · sin ax.

But on the other hand to express the sum by means of our method it will be∫
zdx =

∫
dx cos ax =

1
a

sin ax

and

dz
dx

= −a sin ax,
d3z
dx3 = a3 sin ax,

d5z
dx5 = −a5 sin ax etc.

Therefore,

s = C +
1
a

sin ax +
1
2

cos ax− Aa sin ax
1 · 2 − Ba3 sin ax

1 · 2 · 3 · 4 − etc.

Let x = 0, it will be s = 0 and C = − 1
2 and hence it will be

s = −1
2
+

1
2

cos ax +
1
a

sin ax− Aa sin ax
1 · 2 − Ba3 sin ax

1 · 2 · 3 · 4 − etc.

Hence, because it is

s = −1
2
+

1
2

cos ax +
1
2

cot
1
2

a · sin ax,

it will be as we already just found [§ 164]

1
2

cot
1
2

a =
1
a
− Aa

1 · 2 −
Ba3

1 · 2 · 3 · 4 −
Ca5

1 · 2 · 3 · 4 · 5 · 6 − etc.

§166 Since we found above [§ 166], if a denotes any arc, that it is

π

2
=

a
2
+ sin a +

1
2

sin 2a +
1
3

sin 3a +
1
4

sin 4a + etc.,

let us consider this series and let z = 1
x sin ax that it is
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s = sin a +
1
2

sin 2a +
1
3

sin 3a + · · ·+ 1
x

sin ax.

But in this case it is
∫

zdx =
∫ dx

x sin ax, which integral cannot be exhibited.
Therefore, it will be

dz
dx

=
a
x

cos ax− 1
xx

sin ax,
ddz
dx2 = − a2

x
sin ax− 2a

xx
cos ax +

2
x3 sin ax,

d3z
dx3 = − a3

x
cos ax +

3a2

x2 sin ax +
6a
x3 cos ax− 6

x4 sin ax,

d4z
dx4 =

a4

x
sin ax +

4a3

xx
cos ax− 12a2

x3 sin ax− 24a
x4 cos ax +

24
x5 sin ax.

Since therefore neither the integral formula
∫

zdx can be exhibited nor is it
possible to express this differential sufficiently convenient, we are not able
to define the sum of this series by means of this series, such that anything
could be concluded from there. The same inconvenience occurs in many other
series, if the general term is not sufficiently simple that it differentials can be
expressed in general. Therefore, in the following chapter we will find other
general expressions for the sums of the series whose general terms are either
to composite or cannot be given at all; these can be used with happy success.
But the insufficiency of the method treated here is especially revealed, if the
signs of the terms of the propounded series alternate; for, then, even though
the general terms are simple, the summatory terms can nevertheless not be
expressed in a convenient way by means of this method.
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